
 

CHAPTER 3 

BEARING CAPACITY  

OF SHALLOW FOUNDATIONS 
 

The ultimate soil bearing capacity for a foundation is the pressure that will cause failure in the 

supporting soil 

3.1 MODES OF FAILURE 
Failure is defined as mobilizing the full value of soil shear strength accompanied with excessive 

settlements. For shallow foundations it depends on soil type, particularly its compressibility, and type 

of loading. Modes of failure in soil at ultimate load are of three types; these are (see Fig. 1.5):    
 

Mode of Failure Characteristics Typical Soils 

 
1. General Shear failure 

 

 

 Well defined continuous slip 
surface up to ground level, 

 Heaving occurs on both sides 
with final collapse and tilting 
on one side, 

 Failure is sudden and 
catastrophic, 

 Ultimate value is peak value. 
 
 

 

 Low compressibility soils  

 Very dense sands, 

 Saturated clays (NC and OC), 

 Undrained shear (fast loading). 
 
 
 
 

 
2. local Shear failure      

(Transition) 

 Well defined slip surfaces 
only below the foundation, 
discontinuous either side, 

 Large vertical displacements 
required before slip surfaces 
appear at ground level, 

 Some heaving occurs on both 
sides with no tilting and  no 
catastrophic failure, 

 No peak value, ultimate value 
not defined. 

 

 Moderate compressibility soils  

 Medium dense sands, 
 
 
 
 
 
 
 
 
 
 

3. Punching Shear failure 
 
 

 Well defined slip surfaces 
only below the foundation, 
non either side, 

 Large vertical displacements 
produced by soil 
compressibility, 

 No heaving, no tilting or 
catastrophic failure, no 
ultimate value. 

 High  compressibility soils  

 Very loose sands, 

 Partially saturated clays, 

 NC clay in drained shear 
     (very slow  loading), 

 Peats. 
 
 

 

 Fig. (3.1): Modes of failure. 

Note: General shear failure no exists when: Dr < 30% for sandy soils.     

                                                                            St   > 10    for clayey soils. 

Prepared by: Prof. Dr. Farouk Majeed Muhauwiss 
Civil Engineering Department – College of Engineering Tikrit University 
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3.2 BEARING CAPACITY CLASSIFICATION (According to column loads) 

 Gross Bearing Capacity ( grossq ): It is the total unit pressure at the base of 

footing which the soil can take up.  

 

 

 

 

 

          grossq = total pressure at the base of footing = footing.of.area/Pfooting . 

where )load.column.(pPfooting  + own wt. of footing + own wt. of earth fill 

over the footing.               L.B/)L.B.t.L.B.D.P(q cosgross   

 t.D.
L.B

P
q cosgross  ………….………………..……….(3.1) 

 

 Ultimate Bearing Capacity ( .ultq ): It is the maximum unit pressure or the 

maximum gross pressure that a soil can stand without shear failure. 

 

 Allowable Bearing Capacity ( .allq ): It is the ultimate bearing capacity 

divided by a reasonable factor of safety.  

S.F

q
q

.ult
.all  ..................................…........……………….........(3.2) 

 

 Net Ultimate Bearing Capacity: It is the ultimate bearing capacity minus 

the vertical pressure that is produced on horizontal plain at level of the base of the 

foundation by an adjacent surcharge. 

 .Dqq f.ultnet.ult ….…..………………..…………..…….(3.3) 

 Net Allowable Bearing Capacity ( net.allq
 ): It is the net safe bearing 

capacity or the ultimate bearing capacity divided by a reasonable factor of safety.  

P 

G.S. 

 

B 
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)4.3(........…………...        
S.F

.Dq

S.F

q
q

f.ultnet.ult

net.all






         :Approximate 

Exact:                      


.D
S.F

q
q f

.ult
net.all   .....…......……………….........(3.5) 

 

3.3 FACTOR OF SAFETY IN DESIGN OF FOUNDATION 

The general values of safety factor used in design of footings are 2.5 to 3.0, however, 

the choice of factor of safety (F.S.) depends on many factors such as: 

1. The variation of shear strength of soil, 

2. Magnitude of damages, 

3. Reliability of soil data such as uncertainties in predicting the .ultq , 

4. Changes in soil properties due to construction operations, 

5. Relative cost of increasing or decreasing F.S., and 

6. The importance of the structure, differential settlements and soil strata underneath 

the structure.  

 

3.4 BEARING CAPACITY REQUIREMENTS 

  Three requirements must be satisfied in determining bearing capacity of soil. These 

are: 

 

(1) Adequate depth; the foundation must be deep enough with respect to 

environmental effects; such as: frost penetration, seasonal volume changes in the 

soil,  to exclude the possibility of erosion and undermining of the supporting soil 

by water and wind currents, and to minimize the possibility of damage by 

construction operations,  

 

(2) Tolerable settlements, the bearing capacity must be low enough to ensure that both 

total and differential settlements of all foundations under the planned structure are 

within the allowable values,  
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(3) Safety against failure, this failure is of two kinds: 

 The structural failure of the foundation; which may be occur if the foundation 

itself is not properly designed to sustain the imposed stresses, and 

 The bearing capacity failure of the supporting soils. 

 

 

3.5 FACTORS AFFECTING BEARING CAPACITY  

 Type of soil (cohesive or cohesionless). 

 Physical features of the foundation; such as size, depth, shape, type, and 

rigidity. 

 Amount of total and differential settlement that the structure can stand. 

 Physical properties of soil; such as density and shear strength parameters. 

 Water table condition. 

 Original stresses. 

 
3.6 METHODS OF DETERMINING BEARING CAPACITY  

(a)  Bearing Capacity Tables 

The bearing capacity values can be found from certain tables presented in building 

codes, soil mechanics and foundation books; such as that shown in Table (3.1). They are 

based on experience and can be only used for preliminary design of light and small 

buildings as a helpful indication; however, they should be followed by the essential 

laboratory and field soil tests.  

 

Table (3.1) neglects the effect of: (i) underlying strata, (ii) size, shape and depth of 

footings, (iii) type of the structures supported by the footings, (iv) there is no specification 

of the physical properties of the soil in question, and (v) assumes that the ground water 

table level is at foundation level or with depth less than width of footing. Therefore, if 

water table rises above the foundation level, the hydrostatic water pressure force which 

affects the base of foundation should be taken into consideration.  
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Table (3.1): Bearing capacity values according to building codes. 
 

Soil type Description 
Bearing pressure 

 (kg/cm2) 
Notes 

 
Rocks 

 
1. bed rocks. 
2. sedimentary layer rock 

(hard shale, sand stone, 
siltstone). 

3. schist or erdwas. 
4. soft rocks. 
 

 
70 
30 
 
 

20 
13 

Unless they are 
affected by water. 

 
Cohesionless 

soil 

 
 
1. well compacted sand or 

sand mixed with gravel. 
2. sand, loose and well 

graded or loose mixed 
sand and gravel. 

3. compacted sand, well 
graded. 

4. well graded loose sand. 

Dry submerged 

Footing width 
1.0 m. 

 
 

3.5-5.0 
 

1.5-3.0 
 

1.5-2.0 
 

0.5-1.5 

 
 

1.75-2.5 
 

0.5-1.5 
 

0.5-1.5 
   

0.25-0.5 

 
Cohesive 

soil 

 
1. very stiff clay 
2. stiff clay 
3. medium-stiff clay 
4. low stiff clay 
5. soft clay 
6. very soft clay 
7. silt soil 
 

 
2-4 
1-2 

0.5-1 
0.25-0.5 
up to 0.2 
0.1-0.2 
1.0-1.5 

It is subjected to 
settlement due to 
consolidation 

 

 

(b)  Field Load Test 

This test is fully explained in (chapter 2). 

 

(c)  Bearing Capacity Equations 

Several bearing capacity equations were developed for the case of general shear 

failure by many researchers as presented in Table (3.2); see Tables (3.3, 3.4 and 

3.5) for related factors. 
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Table (3.2): Bearing capacity equations by the several authors indicated. 
 

 Terzaghi (see Table 3.3 for typical values for PK  values) 

          S.N..B.5.0NqS.cNq qcc.ult  

)/(cos

e
N

tan)].(..[

q
2452 2

1802
7502









;            cot).N(N qc 1 ;           )
cos

k
(

tan
N

P
1

2 2








  

where a close approximation of 






 


2

33
453 2 )(

tan.kP . 

 
 
 
 
 

         Strip circular square rectangular 

cS   = 1.0 1.3 1.3 (1+ 0.3 B / L) 

S   = 1.0 0.6 0.8 (1- 0.2 B / L) 

 

 Meyerhof (see Table 3.4 for shape, depth, and inclination factors) 
 

Vertical load:           d.S.N..B.5.0d.S.N.qd.S.N.cq qqqccc.ult    

Inclined load:           i.d.N..B.5.0i.d.N.qi.d.N.cq qqqccc.ult  

  

)/(taneN tan.
q 2452   ;          cot).N(N qc 1 ;       ).tan().N(N q  411  

 

 

 Hansen (see Table 3.5 for shape, depth, and inclination factors) 
 

0..For  :     bgidSN..B.5.0bgidSqNbgidScNq qqqqqqcccccc.ult   

0..For  :    q)gbidS(S.q cccccu.ult  1145   

 

 )/(taneN tan.
q 2452   ;         cot).N(N qc 1 ;         tan).N(.N q 151  

 

 

 Vesic (see Table 3.5 for shape, depth, and inclination factors) 
 

Use Hansen's equations above 
 

)/(taneN tan.
q 2452   ;         cot).N(N qc 1 ;         tan).N(N q 12  

 

 

  All the bearing capacity equations above are based on general shear failure in soil. 
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 Note: Due to scale effects, N  and then the ultimate bearing capacity decreases with increase in size 

of foundation. Therefore, Bowle's (1996) suggested that for (B > 2m), with any bearing capacity 

equation of Table (3.2), the term (  dSN.B.50 ) must be multiplied by a reduction factor:             











2
2501

B
log.r       ; i.e.,  rdSN.B.50  

B (m)  2 2.5 3 3.5 4 5 10 20 100 

r  1 0.97 0.95 0.93 0.92 0.90 0.82 0.75 0.57 

 
Table (3.3): Bearing capacity factors for Terzaghi's  equation. 

deg,..  cN  qN  N  PK  

0 5.7


 1.0 0.0 10.8 

5 7.3 1.6 0.5 12.2 

10 9.6 2.7 1.2 14.7 

15 12.9 4.4 2.5 18.6 

20 17.7 7.4 5.0 25.0 

25 25.1 12.7 9.7 35.0 

30 37.2 22.5 19.7 52.0 

34 52.6 36.5 36.0  

35 57.8 41.4 42.4 82.0 

40 95.7 81.3 100.4 141.0 

45 172.3 173.3 297.5 298.0 

48 258.3 287.9 780.1  

50 347.5 415.1 1153.2 800.0 


= 1.5   + 1 

 

 
Table (3.4): Shape, depth and inclination factors for Meyerhof's equation. 

 

For Shape Factors Depth Factors Inclination Factors 

Any   
L

B
K..S Pc 201  

B

D
K.d f

Pc 201  
2

90
1 












 qc ii  

 10  
L

B
K..SS Pq 101   

B

D
K.dd f

Pq 101   

2

1 











i  

0  01.SSq    01.ddq    0i  

Where:  )/(tanKP 2452   

                angle of resultant measured from vertical without a sign. 

              B, L , fD = width, length, and depth of footing. 

Note:-  When triaxial  is used for plan strain, adjust   as:  triaxialPs )
L

B
..(  1011  

 
 
 

R  
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3.7 WHICH EQUATIONS TO USE? 
Of the bearing capacity equations previously discussed, the most widely used 

equations are Meyerhof's and Hansen's. While Vesic's equation has not been much used 

(but is the suggested method in the American Petroleum Institute, RP2A Manual, 1984). 

 
Table (3.6) : Which equations to use. 

Use Best  for 
Terzaghi  Very cohesive soils where D/B   1 or for a quick estimate of .ultq

to compare with other methods, 

 Somewhat simpler than Meyerhof's, Hansen's or Vesic's 

equations; which need to compute the shape, depth, inclination, 

base and ground factors, 

 Suitable for a concentrically loaded horizontal footing, 

 Not applicable for columns with moment or tilted forces, 

   More conservative than other methods. 

Meyerhof, Hansen, Vesic 

 

  Any situation which applies depending on user preference with a 

particular method. 

Hansen, Vesic  When base is tilted; when footing is on a slope or when D/B >1. 

 

3.8 EFFECT OF SOIL COMPRESSIBILITY (local shear failure) 

 

1. For clays sheared in drained conditions, Terzaghi (1943) suggested that the shear 

strength parameters  c  and    should be reduced as: 

c67.0c*      and     )tan67.0(tan 1*    …………….………...…..(3.6) 

 

2. For loose and medium dense sands (when 67.0Dr  ), Vesic (1975) proposed: 

   tan)D75.0D67.0(tan 2
rr

1* …………….………...………...(3.7) 

where  rD   is the relative density of the sand, recorded as a fraction. 

 

Note: For dense sands ( 67.0Dr  ) the strength parameters need not be reduced, since the 

general shear mode of failure is likely to apply. 
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BEARING CAPACITY EXAMPLES   (1) 

 
 

Example (1): Determine the allowable bearing capacity of a strip footing shown below 

using Terzaghi and Hansen Equations if  c = 0,  30 , fD = 1.0m , B = 1.0m , 

19soil  kN/m3,  the water table is at ground surface, and  SF=3. 

 

Solution: 

(a) By Terzaghi's equation: 

 S.N..B.
2

1
qNS.cNq qcc.ult   

Shape factors:  from table (3.2), for strip footing 0.1SSc     

Bearing capacity factors:  from table (3.3), for  30 , 7.19N,..5.22Nq    

.ultq 0 + 1.0 (19-9.81)22.5 + 0.5x1(19-9.81)19.7x1.0 = 297 kN/m2 

.allq =297/3 =  99 kN/m2 

 

(b) By Hansen's equation: 

      0..for  :  

 bgidSN.B.5.0bgidSqNbgidScNq qqqqqqcccccc.ult   

Since c = 0, any factors with subscript c do not need computing. Also, all ii b..and..g  

factors are 1.0; with these factors identified the Hansen's equation simplifies to:         

 dSN.B.5.0dSNqq qqq.ult   

From table (3.5): 








175.1 ..use.. 2 L/B for

  ..use.. 34for...

trps

trps




,   175.1.use. trps    

175.1.use. trps   ,   1.5 x 30 - 17= 28  , 

Bearing capacity factors: from table (3.4), for  28 , 9.10N,..7.14Nq    
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Shape factors: from table (3.5), ,0.1SS q   

Depth factors: from table (3.5),  

                  
B

D
)sin1(tan21d 2

q   ,     

29.1
1

1
)28sin1(28tan.21d 2

q  ,    and    0.1d   

.ultq 1.0 (19-9.81)14.7x1.29 + 0.5x1(19-9.81)10.9x1.0 = 224.355 kN/m2 

.allq =224.355/3 =  74.785 kN/m2 

 

Example (2): A footing load test produced the following data:  

fD = 0.5m, B = 0.5m, L = 2.0m, 31.9soil  kN/m3,  5.42tr , c = 0,  

kN.1863)measured(P .ult  ,  18632x5.0/1863)measured(q .ult   kN/m2. 

Required: compute .ultq  by Hansen's and Meyerhof's equations and compare 

computed with measured values. 

 

Solution: 

(a) By Hansen's equation: 

Since c = 0, and all ii b..and..g  factors are 1.0; the Hansen's equation simplifies to:  

 dSN.B.5.0dSNqq qqq.ult   

From table (3.5): L/B = 2/0.5 = 4 > 2  175.1 ..use..  trps   ,    

1.5 x 42.5  - 17= 75.46                47...take   

Bearing capacity factors: from table (3.2) 

)2/45(tan..eN 2tan.
q   ,      tan)1N(5.1N q   

for  47 :     2.187Nq  ,     5.299N   

Shape factors: from table (3.5), 

,27.147tan
0.2

5.0
1tan

L

B
1Sq         9.0

0.2

5.0
4.01

L

B
4.01S   
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Depth factors: from table (3.5),     

B

D
)sin1(tan21d 2

q   , 155.1
5.0

5.0
)47sin1(47tan21d 2

q  , 0.1d   

.ultq 0.5 (9.31)187.2x1.27x1.155 + 0.5x0.5(9.31)299.5x0.9x1.0=  1905.6 kN/m2 

          versus 1863 kN/m2 measured. 

(b) By Meyerhof's equation: 

From table (3.2) for vertical load with c = 0: 

 dSN.B.5.0dSNqq qqq.ult   

From table (3.4): trps )
L

B
1.01.1(   ,  (1.1 - 0.1

0.2

5.0
)42.5 = 45.7,    46...take                   

Bearing capacity factors: from table (3.2) 

     )2/45(tan..eN 2tan.
q   ,  )4.1tan()1N(N q    

for  46 :  5.158N q  ,  7.328N   

Shape factors: from table (3.4) 

)2/45(tanK 2
p  =6.13,      15.1

0.2

5.0
)13.6(1.01

L

B
K.1.01SS pq      

Depth factors: from table (3.4) 

47.2K p  ,      25.1
5.0

5.0
)47.2(1.01

B

D
K.1.01dd pq    

.ultq 0.5(9.31)158.5x1.15x1.25 + 0.5x0.5(9.31)328.7x1.15x1.25 = 2160.4 kN/m2      

versus 1863 kN/m2 measured 

Both Hansen's and Meyerhof's eqs. give over-estimated .ultq compared with measured. 

Example (3): A 2.0x2.0m footing has the geometry and load as shown below. Is the footing 

adequate with a SF=3.0?.  

 

 

 

Solution: 

P  

D =0.3m 

= 17.5 kN/m3 
H = 200 kN 

H  

P = 600 kN 

B =2m 

B  

; c = 25 kN/m2
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We can use either Hansen's, or Meyerhof's or Vesic's equations. An arbitrary choice is Hansen's 

method.  

Check sliding stability:  

use  ;   cCa    and 2
f m42x2A   

28025tan60025x4tanVCA.H afmax   > 200 kN       (O.K. for sliding) 

Bearing capacity By Hansen's equation: 

0.1S..all..factors..ninclinatio..with i   

 b.i.d.N.B.5.0b.i.d.Nqb.i.d.cNq qqqqcccc.ult   

Bearing capacity factors from table (3.2): 

cot).1N(N qc  ,        )2/45(tan..eN 2tan.
q   ,        tan)1N(5.1N q   

for  25 :      7.20N c  ,         7.10N q  ,            8.6N   

Depth factors from table (3.5):     

for D =0.3m,  and   B = 2m, D/B = 0.3/2=0.15 < 1.0   (shallow footing) 

06.1)15.0(4.01
B

D
4.01dc  , 

,  05.1)15.0(311.01
B

D
)sin1(tan21d 2

q    

0.1d   

Inclination factors from table (3.5):     

52.0)
25cotx25x4600

200x5.0
1()

cot.c.AV

H5.0
1(i 55

f
q 








,

47.0
17.10

52.01
52.0

)1N(

)i1(
ii

q

q

qc 








 , 

:0..for  40.0)
25cotx25x4600

200)450/107.0(
1()

cot.c.AV

H)450/7.0(
1(i 55

f















  

The base factors )radians..175.0(10..for   from table (3.5): 

93.0
147

10
1

147
1bc 







, 
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85.0eeb )25tan)175.0(2()tan2(
q    , 80.0eeb )25tan)175.0(7.2()tan7.2(   

    

.ultq 25(20.7)(1.06)(0.47)(0.93) + 0.3(17.5)(10.7)(1.05)(0.52)(0.85) 

                                                       + 0.5(17.5)(2.0)(6.8)(1)(0.40)(0.80)= 304 kN/m2 

3.1013/304q .all   kN/m2 

f.all.all A.qP  =101.3(4) = 405.2 kN < 600 kN (the given load), ∴ B=2m is not adequate 

and, therefore it must be increased and .allP  recomputed and checked. 

3.9 FOOTINGS WITH INCLINED OR ECCENTRIC LOADS 

   INCLINED LOAD: 

If a footing is subjected to an inclined load (see Fig.3.7), the inclined load Q can be 

resolved into vertical and horizontal components. The vertical component vQ can then be 

used for bearing capacity analysis in the same manner as described previously (Table 3.2). 

After the bearing capacity has been computed by the normal procedure, it must be 

corrected by an iR  factor using Fig.(3.7) as:  

    i)load..vertical(.ult)load..inclined(.ult R.x.qq   …………….………...………...(3.8) 

                        

      (a) Horizontal foundation                                 (b) Inclined foundation 

Figure (3.7): Inclined load reduction factors. 

Important Notes:  



70 

 Remember that in this case, Meyerhof's bearing capacity equation for inclined 

load (from Table 3.2) can be used directly:  

                  idN.B.5.0idNqidcNq qqqccc)load..inclined(.ult  ….……….…..(3.9) 

 The footings stability with regard to the inclined load's horizontal component also 

must be checked by calculating the factor of safety against sliding as follows: 

H

H
Fs .max

)slididing(  …………………………….………...………….…...(3.10) 

where: 

H  = the inclined load's horizontal component, 

 tanC.Aforce.resisting.imummax.theH af.max  …. for ( c ) soils; or 

af.max C.AH  ……. for the undrained case in clay ( 0u  ); or 

 tanH .max  ……. for a sand and the drained case in clay ( 0c  ). 

L.Barea..effectiveA f   

ua C.adhesionC   

          and.;clays.medium.to.soft.for....0.1...where   

                        clays.stiff.for....5.0.  . 

   = the net vertical effective load = .DQ fv  ; or 

ffv A.u).DQ(    (if the water table lies above foundation level)  

  = the skin friction angle, which can be taken as equal to (  ),and 

u = the pore water pressure at foundation level. 

   ECCENTRIC LOAD: 

Eccentric load result from loads applied somewhere other than the footing's centroid 

or from applied moments, such as those resulting at the base of a tall column from wind 

loads or earthquakes on the structure.  

To provide adequate )lifting.against(SF  of the footing edge, it is recommended that the 

eccentricity ( 6/Be  ). Footings with eccentric loads may be analyzed for bearing 



71 

capacity by two methods: (1) the concept of useful width and (2) application of reduction 

factors. 

(1)  Concept of Useful Width: 

In this method, only that part of the footing that is symmetrical with regard to the load 

is used to determine bearing capacity by the usual method, with the remainder of the 

footing being ignored. 

 First, computes eccentricity and adjusted dimensions: 

V

M
e

y

x  ;       xe2LL  ;     
V

M
e x

y   ;      ye2BB  ;     L.BAA f   

 Second, calculates .ultq  from Meyerhof's, or Hansen's, or Vesic's equations (Table 

3.2) using B  in the ( )N..B
2

1
  term and  B  or/and L  in computing the shape 

factors and not in computing depth factors. 

(2)   Application of Reduction Factors:  

First, computes bearing capacity by the normal procedure (using equations of Table 

3.2), assuming that the load is applied at the centroid of the footing. Then, the 

computed value is corrected for eccentricity by a reduction factor ( )Re  obtained 

from Figure (3.8) or from Meyerhof's reduction equations as:  











.soilhesionless....for.co .… (e/B)-1R

..soil cohesive .........for…2(e/B)-1R

1/2
e

e
…………….……….(3.11) 

                              e)concentric.(ult)eccentric.(ult R.x.qq                        ……...(3.12) 

 

Figure(3.8): Eccentric load reduction factors. 
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BEARING CAPACITY EXAMPLES   (2) 
Footings with inclined or eccentric loads 

 

Example (4): A square footing of 1.5x1.5m is subjected to an inclined load as shown in figure 

below. What is the factor of safety against bearing capacity (use Terzaghi's equation). 

 

 

 

 

 

 

Solution: 

By Terzaghi's equation:       S.N..B.
2

1
qNS.cNq qcc.ult   

Shape factors: from table (3.2) for square footing 8.0S;3.1Sc   , 2/qc u = 80 kPa 

Bearing capacity factors: from table (3.3) for 0u  :  0N,..0.1N,..7.5N qc    

)load.vertical(.ultq 80(5.7)(1.3)+20(1.5)(1.0) + 0.5(1.5)(20)(0)(0.8) = 622.8 kN/m2 

From Fig.(3.7) with  30 and cohesive soil, the reduction factor for inclined load is 

0.42. 

)load.inclined(.ultq = 622.8(0.42) = 261.576 kN/m2 

30cos.QQv   = 180 (0.866) = 155.88 kN 

Factor of safety (against bearing capacity failure) 77.3
88.155

)5.1)(5.1(576.261

Q

Q

v

.ult   

Check for sliding: 

30sin.QQh   = 180 (0.5) = 90 kN 

 tanC.AH af.max  =(1.5)(1.5)(80) + (180)(cos30)(tan0)=180 kN 

Factor of safety (against sliding) 0.2
90

180

Q

H

h

.max     (O.K.) 

B = 1.5m  

=1.5m = 20 kN/m3 

G.S. 180 kN 

 kPa 

4 m 
W.T. 
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Example (5): A 1.5x1.5m square footing is subjected to eccentric load as shown below. What is 

the safety factor against bearing capacity failure (use Terzaghi's equation): 

 (a)  By the concept of useful width,  and  

 (b)  Using Meyerhof's reduction factors. 

  

 

 

 

 

 

 

 

 

 

 

 

Solution: 

(1) Using concept of useful width: 

from Terzaghi's equation: 

 S.N..B.
2

1
qNS.cNq qcc.ult   

Shape factors: from table (3.2) for square footing 8.0S;3.1Sc   , 2/qc u = 95 kPa 

Bearing capacity factors: from table (3.3) for 0u  : 0N,0.1N,7.5N qc    

The useful width is:   m14.1)18.0(25.1e2BB x   

.ultq 95(5.7)(1.3)+20(1.2)(1.0) + 0.5(1.14)(20)(0)(0.8) = 727.95 kN/m2 

Factor of safety (against bearing capacity failure) 77.3
330

)5.1)(14.1( 727.95

Q

Q

v

.ult   

(2) Using Meyerhof's reduction factors: 

In this case, .ultq is computed based on the actual width: B = 1.5m  

1.2m 

P = 330 kN 

1.5m 

1.5m 

 

=0.18 

Centerline of  footing 

G.s. 

= 190 kN/m2 

= 20 kN/m3 

1.5m 

1.5m 

 

=0.18 

1.5-2(0.18)=1.14m 
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from Terzaghi's equation: 

 N..B4.0qNcN3.1q qc.ult   

)load.concentric(.ultq 1.3(95)(5.7) +20(1.2)(1.0) + 0.4(1.5)(20)(0) = 727.95 kN/m2 

For eccentric load from figure (3.8): 

with Eccentricity ratio 12.0
5.1

18.0

B

ex  ; and cohesive soil eR = 0.76   

 )load.eccentric(.ultq = 727.95 (0.76) = 553.242 kN/m2 

Factor of safety (against bearing capacity failure) 77.3
330

)5.1)(5.1( 553.242

Q

Q

v

.ult    

 

Example (6): A square footing of 1.8x1.8m is loaded with axial load of 1780 kN and subjected to 

Mx = 267 kN-m and My = 160.2 kN-m moments. Undrained triaxial tests of unsaturated soil 

samples give  36 and 4.9c   kN/m2.  If fD = 1.8m, the water table is at 6m below the 

G.S. and 1.18  kN/m3, what is the allowable soil pressure if SF=3.0 using (a) Hansen 

bearing capacity and (b) Meyerhof's reduction factors. 

 

Solution: 

m15.0
1780

267
e y  ;     m09.0

1780

2.160
ex   

m5.1)15.0(28.1e2BB y  ;   m62.1)09.0(28.1e2LL x   

(a) Using Hansen's equation: 

 

 d.S.N.B.5.0d.S.Nqd.S.cNq qqqccc.ult   

Bearing capacity factors from table (3.2): 

cot).1N(N qc  ,        )2/45(tan..eN 2tan.
q   ,        tan)1N(5.1N q   

for  36 :      6.50N c  ,         8.37N q  ,            40N   

Shape factors from table (3.5): 

)0.1...are...factors..b...and..g,i...all...with( iii
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692.1
62.1

5.1

6.50

8.37
1

L

B

N

N
1S

c

q

c 



 ,        673.136tan

62.1

5.1
1tan

L

B
1Sq 




        

629.0
62.1

5.1
4.01

L

B
4.01S 




  

Depth factors from table (3.5):     

for D =1.8m,  and   B = 1.8m, D/B = 1.0   (shallow footing) 

4.1)0.1(4.01
B

D
4.01dc  ,

246.1)0.1()36sin1(36tan21
B

D
)sin1(tan21d 22

q   ,  0.1d   

.ultq = 9.4(50.6)(1.692)(1.4) + 1.8(18.1)(37.7)(1.673)(1.246) 

                                             + 0.5(18.1)(1.5)(40)(0.629)(1)= 4028.635 kN/m2 

878.13423/635.4028q .all   kN/m2 

Actual soil pressure ( .actq ) = 1780/(1.5)(1.62)= 732.510 < 1342.878   (O.K.) 

 

(b) Using Meyerhof's reduction: 

78.0)
8.1

09.0
(1)

L

e
(1R 5.02/1x

ex  ;       72.0)
8.1

15.0
(1)

B

e
(1R 5.02/1y

ey   

Recompute .ultq  as for a centrally loaded footing, since the depth factors are unchanged.   

The revised Shape factors from table (3.5) are: 

75.1
8.1

8.1

6.50

8.37
1

L

B

N

N
1S

c

q

c  ;        73.136tan
8.1

8.1
1tan

L

B
1Sq     

60.0
8.1

8.1
4.01

L

B
4.01S   

 d.S.N.B.5.0d.S.Nqd.S.cNq qqqccc.ult   

.ultq = 9.4(50.6)(1.75)(1.4) + 1.8(18.1)(37.7)(1.73)(1.246) 

                                           + 0.5(18.1)(1.8)(40)(0.60)(1)= 4212.403 kN/m2 

134.14043/403.4212 q
tingloaded.foo centrally..all   kN/m2 
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)R)(R(qq eyextingloaded.foo centrally..allotingloaded..fo eccentric..all   

                                   =1404.134(0.78)(0.72) = 788.35 kN/m2   (very high) 

Actual soil pressure ( .actq ) = 1780/(1.8)(1.8)= 549.383 < 788.35   (O.K.) 

 

3.10 EFFECT OF WATER TABLE ON BEARING CAPACITY 

Generally the submergence of soils will cause loss of all apparent cohesion, coming 

from capillary stresses or from weak cementation bonds. At the same time, the effective 

unit weight of submerged soils will be reduced to about one-half the weight of the same 

soils above the water table. Thus, through submergence, all the three terms of the 

bearing capacity (B.C.) equations may be considerably reduced. Therefore, it is 

essential that the B.C. analysis be made assuming the highest possible groundwater 

level at the particular location for the expected life time of the structure. 

 

 

 

 

 

 

 

 

 

 

 

Case (1): 

If the water table (W.T.) lies at B or more below the foundation base; no W.T. effect. 

Case (2):  

 (from Ref.;Foundation Engg. Hanbook): if the water table (W.T.) lies within the depth 

(dw<B) ; (i.e., between the base and the depth B), use .av  in the term  N.B.
2

1
 as: 

))(B/d( mw.av   ……..………..……….(from Meyerhof) 

 

W.T. 
Case (1) 

B 

 

G.S. Case (5) 

B 

W.T. 
Case (2) 

dw 

Case (3) 

Case (4) 

W.T. 

W.T. 

W.T. 

 

 

D1 

D2 
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 (from Ref.;Foundation Analysis and Design): if the water table (W.T.) lies within the 

wedge zone { )2/45tan(.B5.0H  }; use .av  in the term  N.B.
2

1
 as: 

2
w2wet2

w
w.av )dH(

H
.

H

d
)dH2( 





 ……….(from ,Bowles) 

where:  

)2/45tan(.B5.0H  . 

 = submerged unit weight =( w.sat  ), 

wd = depth to W.T. below the base of footing, 

wetm   = moist or wet unit weight of soil in depth ( wd ) , and 
 

 Snice in many cases of practical purposes, the term  N.B.
2

1
 can be ignored for 

conservative results, it is recommended for this case to use    in the term 

 N.B.
2

1
 instead of .av       

( )Bowles..from()Meyerhof..from( .av.av   ) 

 
 

Case (3): if wd = 0 ; the water table (W.T.) lies at the base of the foundation; use     

 

Case (4): if  the water table (W.T.) lies above the base of the foundation; use: 

.)T.W..below(2.)T.W..above(1t D.D.q    and     in  N.B.
2

1
 term.  

Case (5): if  the water table (W.T.) lies at ground surface (G.S.); use: fD.q    and 

                 in  N.B.
2

1
 term.  

Note: All the preceding considerations are based on the assumption that the seepage 

forces acting on soil skeleton are negligible. The seepage force adds a component to the 

body forces caused by gravity. This component acting in the direction of stream lines is 

equal to ).i( w , where  i  is the hydraulic gradient causing seepage. 
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3.11 Bearing Capacity for Footings on Layered Soils 

Stratified soil deposits are of common occurrence. It was found that when a footing  

is placed on stratified soils and the thickness of the top stratum form the base of the 

footing ( 1d  or H ) is less than the depth of penetration [ )2/45tan(B5.0H .crit  ]; 

in this case the rupture zone will extend into the lower layer (s) depending on their 

thickness and therefore require some modification of ultimate bearing capacity ( .qult ). 

 

Figure (3.18) shows a foundation of any shape resting on an upper layer having 

strength parameters 11 ,c   and underlain by a lower layer with 22 ,c  .  

 
 
 
 
 

Figure (3.11): Footing on layered c  soils. 

 

 Hansen Equation (Ref., Bowles's Book, 1996) 

(1)   Compute )2/45tan(B5.0H 1.crit   using 1   for the top layer. 

(2)   If HH .crit   compute the modified values of c  and  as: 

.crit

2.crit1

H

c)HH(Hc
*c


 ;        

.crit

2.crit1

H

)HH(H
*





  

Note: A possible alternative for c  soils with a number of thin layers is to use average 

values of c and  in bearing capacity equations of Table (3.2) as:   






i

nn2211
.av

H

Hc.....HcHc
c ;       



 


i

nn22111
.av

H

tanH.....tanHtanH
tan


      

(3)  Use Hansen's equation from Table (3.2) for .ultq with *c  and *   

 

 

B  

G.S. 

      H  

d2  

 

 

Layer (1)  

Layer (2)  
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BEARING CAPACITY EXAMPLES   (3) 

 

Footings on layered soils 

  

 

Example (8): (footing on layered clay)  

A rectangular footing of 3.0x6.0m is to be placed on a two-layer clay deposit as shown in figure 

below. Estimate the ultimate bearing capacity. 

 

 

 

 

 

 

 

 

Solution: 

)2/45tan(B5.0H .crit  = 0.5(3) tan45 =1.5m >1.22m  

 the critical depth penetrated into the 2nd. layer of soil. 

For case(1); clay on clay layers using Hansen's equation: 

 From Bowles's Book, 1996:  

q)dS1(C.14.5q cc.avg.ult   

where:   

.avgu CS   = 
 Hcrit 

H] -[Hcrit CHC 21 
 093.84

 1.5 

1.22)-(1.5 15177(1.22)



  

1.0)6/3(2.0L/B2.0Sc  ;   for 1B/Df  :  24.0)3/83.1(4.0B/D4.0dc       

   .ultq =5.14(84.093)(1+0.1+0.24)+ )26.17(83.1 = 610.784 kPa 

 

 

 

P  

1.83m 

G.S. 

3m  

1.22m 

Clay (1) 

Clay (2) 

H
 =

1
.5

m
 

77 kPa 

 

 17.26 kN/m3 

115 kPa 

Prepared by: Dr. Farouk Majeed Muhauwiss 
Civil Engineering Department – College of Engineering 

Tikrit University 
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Example (9): (footing on c  soils)  

Check the adequacy of the rectangular footing 1.5x2.0m shown in figure below against shear 

failure (use F.S.= 3.0), w  =10 kN/m3 .  

 

 

 

  

 

 

 

 

Solution: 

 

15
8.01

)10(70.2

e1

.G ws
1d 








  kN/m3 

4.19
8.01

10)8.070.2(

e1

)eG( ws
1sat 












  kN/m3 

7.18
9.01

)10(65.2

e1

.G ws
2d 








  kN/m3 

45.19
85.01

10)85.075.2(
2sat 




  kN/m3 

 

)2/45tan(B5.0H .crit  = 0.5(1.5) tan45 = 0.75m > 0.50m  

  the critical depth penetrated into the soil layer (3). 

Since soils (2) and (3) are of clay layers, therefore; by using Hansen's equation: 

 From Bowles's Book, 1996:  

q)dS1(C14.5q cc.avg.ult   

where:   

parameter 
Soil 

(1) 

Soil 

(2) 

Soil 

(3) 

Gs  2.70 2.65 2.75 

e 0.8 0.9 0.85 

c (kPa) 10 60 80 

  35 0 0 

P = 300 kN  

0.8m 

G.S. 

1.5 x 2m  0.4m 

0.5m 

W.T. 
Soil (1) 

Soil (2) 

Soil (3) 
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.avgC  = 
 Hcrit 

H] -[Hcrit CHC 21 
 67.66

0.75

0.50)-(0.75 8060(0.5)



  

15.0)2/5.1(2.0L/B2.0Sc  ;  

for 1B/Df   32.0)5.1/2.1(4.0B/D4.0dc       

   .ultq =5.14(66.67)(1+0.15+0.32)+0.8(15)+0.4(19.45-10)= 519.5 kPa 

4.15778.15
3

5.519
)(q netall   kPa  

100
2x5.1

300
qapplied   kPa < 4.157)(q netall   kPa    (O.K.) 

 

Check for squeezing:  

For no squeezing of soil beneath the footing:  ( qc4q 1.ult  ) 

qc4 1  = 4(60)+ 0.8(15)+0.4(19.45-10)= 255.78 kPa < 519.5 kPa   (O.K.) 

 

3.12 Skempton's Bearing Capacity Equation  

 Footings on Clay and Plastic Silts: 

From Terzaghi's equation, the ultimate bearing capacity is: 

                   S.N..B.
2

1
qNS.cNq qcc.ult   …………………...……….…..(3.12) 

For saturated clay and plastic silts: ( 0u   and 0N.and,.0.1N,7.5N qc   ), 

For strip footing:   0.1SSc    

qcNq c.ult  ...……………..…………………….……….………..(3.30) 

                     
3

q
q .ult

.all   and     qqq .all)net(.all   

           )q
3

q
(

3

cN
q

3

qcN
q

3

q
q cc.ult

)net(.all 


 ………..………...(3.30a) 
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where: cN  bearing capacity factor obtained from figure (3.12) depending on shape of 

footing and 
B

D f
. ( q

3

q
 ) is a small value can be neglected. 

for c  soil:   )2/45tan(c2)2/45(tan2
31    

for UCT:  u1 q  and 3 = 0; then  )2/45tan(c2qu   

or 0u  ; 
2

q
c u  and equation (3.30a) will be:           

6

N
qq c

u)net(.all  …....………………..…………..(3.30b) 

From figure (3.12) for 
B

D f
=0: 2.6Nc   for square or circular footings; 5.14 for strip or 

continuous footings  If 0.6Nc  , then:   

  u)net(.all qq   …………..………………………..…………………..(3.31) 

See figure (3.13) for net allowable soil pressure for footings on clay and plastic silt.   
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Pure Cohesive Soil 

 

 

  
 

 

 

 Soil 

Figure (3.12):  bearing capacity factor for  

         Footings on clay under 0 conditions  

                         (After Skempton, 1951).  

Figure (3.13): Net allowable soil pressure for 

footings on clay and plastic silt, determined for a 

factor of safety of 3 against bearing capacity failure ( 0 

conditions). Chart values are for strip footings (B/L=0); and 

for other types of footings multiply values by (1+ 0.2B/L).   

    or        

  

  

 Square and circular B/ L=1 

 Continuous B/ L= 0 

Unconfined compressive strength 
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N
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Example (10): (footing on clay)  

Determine the size of the square footing shown in figure below. If uq = 100 kPa and F.S.= 3.0? 

 

 

 

 

 

Solution: 

Assume B =3.5m,  B/D  = 2/3.5 = 0.57 then from figure (3.12): 3.7Nc   

qcNq c.ult  = 50(7.3) + 2(20) = 405 kPa 

4.93)4.0(24)6.1(20
3

405
q

3

q
q .ult

)net(.all   kPa 

Area=1000/93.4 = 10.71 m2;  for square footing: m5.327.371.10B   

  take B =3.25m , and B/D  = 2/3.25 = 0.61 then from figure (3.15): 5.7Nc   

qcNq c.ult  = 50(7.5) + 2(20) = 415 kPa 

73.96)4.0(24)6.1(20
3

415
q

3

q
q .ult

)net(.all   kPa 

Area=1000/96.73 = 10.34 m2;  m25.321.334.10B   (O.K.) 

      use B x B =  (3.25 x 3.25)m 

 

Example (11): (footing on clay)  

For the square footing shown in figure below. If uq = 380 kPa and F.S.= 3.0, determine .allq  

and .)(minD f  which gives the maximum effect on .allq ?. 

 

 

 

Solution: 

From Skempton's equation:  

Q = 1000 kN  

G.S. 

B = ? 0.4m 

2m 
 kN/m3 

 kN/m3 

Q 

G.S. 

0.9x0.9m  

 

 kN/m2 
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For strip footing:      
3

cN
q c

)net(.all    

For square footing:  2.1x
3

cN
q c

)net(.all    

From Skempton's figure (3.12) at B/D f = 4  and  B/L=1 (square footing):  cN = 9 

  570
3

)9(
2

380

)net(.allq   kPa     and   fD = 4(0.9) = 3.6m 

 

 

 Rafts on Clay: 

 If  
A

Q
qb




area

.)L.L.L.D(load.Total 
  > .allq  use pile or floating foundations. 

From Skempton's equation, the ultimate bearing capacity (for strip footing) is:  

qcNq c.ult  ...……………...…………………….……….………..……..(3.30) 

           c)net(.ult cNq   ,         
.S.F

cN
q c

)net(.all        or    

)net(.all

c

q

cN
.S.F   

           Net soil pressure = .Dq fb   

       
.Dfq

cN
.S.F

b

c


 .………………..…………………….……….………..…..(3.32) 

Notes: 

(1) If .Dq fb   (i.e., .S.F ) the raft is said to be fully compensated foundation (in this 

case, the weight of foundation (D.L.+ L.L.) = the weight of excavated soil). 

(2) If .Dq fb   (i.e., value.certain.S.F  ) the raft is said to be partially compensated 

foundation such as the case of storage tanks.  
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Example (12): (raft on clay)  

Determine the F.S. for the raft shown in figure for the following depths: fD 1m,2m, and  

3m?. 

 

Solution: 

.Dfq

cN
.S.F

b

c


  

  For fD 1m:  

From figure (3.12) B/D f =1/10 = 0.1 and L/B 0:  

4.5N stripc   and 
gulartanreccN = )L/B2.01(N stripc   = 5.4 (1+ 0.2

20

10
) = 5.94  

  62.3
18100

)94.5(50

)18(1
20x10

20000

94.5)2/100(

.Dfq

cN
.S.F

b

c 












 

  For fD 2m:   

From figure (3.12) B/D f =2/10 = 0.2  and  L/B 0 : 

5.5N stripc     and   
gulartanreccN =5.5 (1+ 0.2

20

10
) = 6.05  

  72.4
36100

)05.6(50

)18(2
20x10

20000

05.6)2/100(

.Dfq

cN
.S.F

b

c 












 

  For fD 3m:   

From figure (3.12) B/D f =3/10 = 0.3 and L/B 0:  

7.5N stripc     and   gulartanreccN =5.7 (1+ 0.2
20

10
) = 6.27  

  81.6
54100

)27.6(50

)18(3
20x10

20000

27.6)2/100(

.Dfq

cN
.S.F

b

c 












 

 

Q = 20 000 kN  
G.S. 

10 x 20 m 

 
 kN/m2 

 kN/m3 
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3.13 Design Charts for Footings on Sand and Nonplastic Silt  

From Terzaghi's equation, the ultimate bearing capacity is: 

                 S.N..B.
2

1
NqS.cNq qcc.ult 

……..……………..……...……….…..(3.12) 

For sand )0c(   and for strip footing ( 0.1SSc   ), then, Eq.(3.12) will be: 

 N..B
2

1
Nqq q.ult  ...……………..…………………….……….………..(3.33) 

qN..B
2

1
Nqq q)net(.ult    

  .DN..B
2

1
N..Dq fqf)net(.ult   









  


 N.

2

1
)1N(

B

.D
BN..B

2

1
)1N(.Dq q

f
qf)net(.ult  









 


N.

2

1
)1N(

B

.D

.S.F

B
q q

f

)net(.all     ......………..………..………..(3.34) 

Notes:  

(1) the allowable bearing capacity shown by (Eq.3.34) is derived from the frictional 

resistance due to: (i) the weight of the sand below the footing level; and (ii) the 

weight of the surrounding surcharge or backfill. 

 (2) the design charts for proportioning shallow footings on sand and nonplastic 

silts are shown in 

Figures (3.15, 3.16 and 3.17). 
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Fig.(3.16): Relationship between bearing 

capacity factors and . 

Fig.(3.17): Chart for correction of N-values in 

sand for overburden pressure. 
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Fig.(3.15): Design charts for proportioning shallow footings on sand. 
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Limitations of using charts (3.15, 3.16 and 3.17): 

 These charts are for strip footing, while for other types of footings multiply .allq  by  

     (1+ 0.2 B/L). 

 The charts are derived for shallow footings ( 1B/D f  ); 100  Ib/ft3; settlement = 

1.0 (inch); F.S. = 2.0; no water table (far below the footing); and corrected N-values.   

 N-values must be corrected for:  

(i) overburden pressure effect using figure (3.17) or the following formulas: 

                            
)Tsf(P

20
log77.0C

o
N        or        

)kPa(P

2000
log77.0C

o
N                 

If )Tsf(25.0po   or )kPa(25 , (no need for overburden pressure correction). 

(ii) and water table effect: 

                            

f

w
w

DB

D
5.05.0C


  

 

 

 

 

Example (13): (footing on sand)  

Determine the gross bearing capacity and the expected settlement of the rectangular footing shown in 

figure below. If .avgN (not corrected) =22 and the depth for correction = 6m?. 

 

 

 

Solution: 

oP = 0.75(16) + 5.25(16-9.81) = 44.5 kPa >25 kPa 

5.44

2000
log77.0

)kPa(P

2000
log77.0C

o
N  =1.266   

75.0
75.075.0

75.0
5.05.0

DB

D
5.05.0C

f

w
w 





  

.corrN =22(1.266)(0.75)= 20.8  (use N = 20) 

G.S. 

 

 

 

 

W.T. 

Q 

G.S. 

0.75x1.5m  

 

 kN/m3 

W.T. 



89 

From figure (3.15) for footings on sand: at B/D f = 1 and B = 0.75m (2.5ft) and N 20 

for strip footing: 307.232594.105x)Tsf(2.2q )net(.all   kPa       

for rectangular footing: 307.232q )net(.all  x (1+0.2B/L) = 255.538 kPa       

.Dqq f)net.(allgross   = 255.538 + 0.75(16) =  267.538 kPa 

And the maximum settlement is not more than (1 inch or 25mm). 

 

Example (14): (bearing capacity from field tests)  

SPT results from a soil boring located adjacent to a planned foundation for a proposed 

warehouse are shown below. If spread footings for the project are to be found (1.2m) below 

surface grade, what foundation size should be provided to support (1800 kN) column load? 

Assume that 25mm settlement is tolerable, W.T. encountered at (7.5m). 

 

 

 

 

 

 

 

 

Solution: 

Find o   at each depth and correct fieldN values.    Assume B = 2.4 m  

At depth B below the base of footing (1.2+2.4) = 3.6m;  203/)251915(N .avg   

For 20N .avg  , and B/D f = 0.5; .allq =2.2 T/ft2 = 232.31 kPa  from Fig.(3.15). 

SPT sample depth 

(m) 
fieldN  

0.3 9 

1.2 10 

2.4 15 

3.6 22 

4.8 19 

6 29 

7.5 33 

10 27 

B = ?  
=1.2m 

= 17 kN/m3 

G.S. 

P=1800 kN 

7.5m 

W.T. 

 kN/m3 
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SPT sample 

depth (m) 
fieldN  o   

(kN/m2) 

o   

(T/ft2) 

NC  

(Fig.3.17) 

fieldN N.CN   

0.3 9     

1.2 10 20.4 0.21 1.55 15 

2.4 15 40.8 0.43 1.28 19 

3.6 22 61.2 0.64 1.15 25 

4.8 19 81.6 0.85 1.05 20 

6 29 102 1.07 0.95 27 

7.5 33 127.5 1.33 0.90 30 

10 27 152.5 1.59 0.85 23 

Say B = 2.5 m,      .allq =
L.x.B

P
,      m10.3

5.2X31.232

1800
L  ,  use (2.5 x 3.25)m footing. 

 Rafts on Sand:  

For allowable settlement = 2 (inch) and differential settlement >3/4 (inch) provided 

that .min)m4.2.(or).ft8(D f   the allowable net soil pressure is given by: 

 

 

 

 

 

 

 

 

9

)N(S
Cq .all

w)net.(all    .….………… 50N5for  ..………..………..(3.35) 

If wC =1 and 2S .all  ;   then   )kPa(N23.23)Tsf(N22.0
9

)N(0.2
0.1q )net.(all   

and    
Area

Q
.Dqq f)net.(allgross


   

where: wwfwwfwf )DD())(DD(D.D    

           

f

w
w

DB

D
5.05.0C


 = (correction for water table) 

 N = SPT number (corrected for both W.T. and overburden pressure). 

Raft  foundation 

Sand 

Q  G.S. 

 

W.T.  
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Hint: A raft-supported building with a basement extending below water table is acted on 

by hydroustatic uplift pressure or buoyancy equal to wwf )DD(   per unit area. 

 

 

Example (15): (raft on sand)  

Determine the maximum soil pressure that should be allowed at the base of the raft shown in 

figure below If .avgN (corrected) =19?. 

 

 

 

 

 

 

Solution: 

 

 

For raft on sand:   )kPa(N23.23q )net.(all    = 23.23(19) = 441.37 kPa 

Correction for water table:   

f

w
w

DB

D
5.05.0C


 = 625.0

39

3
5.05.0 


  

 856.275)625.0(37.441q )net.(all   kPa  

The surcharge = .D f = 3(15.7) = 47.1 kPa 

and     .Dqq f)net.(allgross 275.856+ 47.1 = 323 kPa 

 

3.14 Bearing Capacity of Footings on Slopes 

If footings are on slopes, their bearing capacities are less than if the footings were on 

level ground. In fact, bearing capacity of a footing is inversely proportional to ground 

slope.  

 Meyerhof's Method:  

In this method, the ultimate bearing capacity of footings on slopes is computed using 

the following equations: 

Q  
G.S. 

 

W.T. 

 

 

kN/m3; blow/30cm 

Very fine sand  

Rock 
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qcqslope.on.footing.continuous.ult N.B.
2

1
cN)q(  .…………………………….…....…...(3.36) 














ground.level.on.footing.continuous.ult

ground.level.on.footing.s.or.c.ult
slope.on.footing.continuous.ultslope.on.footing.s.or.c.ult

)q(

)q(
)q()q( …..(3.37) 

where: 

cqN  and qN   are bearing capacity factors for footings on or adjacent to a slope;  

determined from figure (3.18),  

c or s footing denotes either circular or square footing, and 

)q( .ult  of footing on level ground is calculated from Terzaghi's equation.   

Notes: 

(1) A triaxial  should not be adjusted to ps , since the slope edge distorts the failure 

pattern such that plane-strain conditions may not develop except for large B/b  

ratios. 

(2) For footings on or adjacent to a slope, the overall slope stability should be checked 

for the footing load using a slope-stability program or other methods such as 

method of slices by Bishop's. 

 

 

 

 



93 

 

(a) On face of slope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) On top of slope. 

 

Figure (3.18): bearing capacity factors for continuous footing (after Meyerhof). 

 

 

Distance of foundation from edge of slope 

b/B (for Ns = 0) or b/H (for Ns > 0). 

Distance of foundation from edge of slope, b/B  
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BEARING CAPACITY EXAMPLES   (4) 
Footings on slopes 

  

 

Example (16): (footing on top of a slope)  

A bearing wall for a building is to be located close to a slope as shown in figure. The ground 

water table is located at a great depth. Determine the allowable bearing capacity by Meyerhof's 

method using F.S. =3?. 

 

   

 

 

 

Solution: 

qcqslope.on.footing.continuous.ult N.B.
2

1
cN)q(  .………………………….…....…...(3.36) 

From figure (3.18-b): with  30 ,  30 , 5.1
0.1

5.1

B

b
 , and 0.1

0.1

0.1

B

D f
  (use the 

dashed line)             qN =40 

2

1
N)0()q( cqslope.on.footing.continuous.ult  (19.5)(1.0)(40) = 390 kN/m2 

1303/390q .all   kN/m2. 

 

Example (17): (footing on face of a slope)  

Same conditions as example (16), except that a 1.0m-by 1.0m square footing is to be constructed 

on the slope (use Meyerhof's method). 

 

 

 

Solution: 














ground.level.on.footing.continuous.ult

ground.level.on.footing.s.or.c.ult
slope.on.footing.continuous.ultslope.on.footing.s.or.c.ult

)q(

)q(
)q()q( …..(3.37) 

  

1.0mx1.0m 

  
            Cohesionless Soil 

 kN/m3, c =0,    

  

1.5m  G.S. 

  

Q 

Cohesionless Soil 

 kN/m3, c =0,  

6.1m  1.0m  

  

Prepared by: Dr. Farouk Majeed Muhauwiss 
Civil Engineering Department – College of Engineering 

Tikrit University 
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2

1
N)0()q( cqslope.on.footing.continuous.ult  (19.5)(1.0)(25) =  243.75kN/m2 

)q( .ult  of square or strip footing on level ground is calculated from Terzaghi's equation:                                 

 S.N..B.
2

1
qNScNq qcc.ult   

 

Bearing capacity factors from table (3.3):   for  30 ;   7.19N,..5.22N,..2.37N qc    

Shape factors table (3.2): for square footing 3.1Sc  , 8.0S  ; strip footing 0.1SSc     

ground.level.on.footing.square.ult )q(     0 + 1.0 (19.5)(22.5) + 0.5(1.0)(19.5)(19.7)(0.8) = 592.4  kN/m2 

ground.level.on.footing.continuous.ult )q( 0 +1.0 (19.5)(22.5) + 0.5(1.0)(19.5)(19.7)(1.0)= 630.8  kN/m2 

    912.228=
8.630

4.592
75.243=)q( slope.on.footing.square.ult  kN/m2  

and 76
3

912.228
)q( slope.on.footing.square.all ==  kN/m2 

 

Example (18): (footing on top of a slope)  

A shallow continuous footing in clay is to be located close to a slope as shown in figure. The 

ground water table is located at a great depth. Determine the gross allowable bearing capacity 

using F.S. = 4  

   

 

 

 

 

 

Solution: 

Since B<H assume the stability number 0N s   and for purely cohesive soil,  =0 

cqslope.on.footing.continuous.ult cN)q(   

Q 

Clay Soil 

 kN/m3, c =50 kN/m2,  

6.2m  

  

  

0.8m  G.S. 

1.2m  
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From figure (3.18-b) for cohesive soil: with  30 , 0sN , 670
21

80
.

.

.

B

b
 , and 

0.1
2.1

2.1

B

D f
  (use the dashed line)             cqN =6.3 

315)3.6)(50()q( slope.on.footing.continuous.ult   kN/m2 

8.784/315q .all   kN/m2. 
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Figure (3.19) Footing for tension loads 

3.15 Foundation with Tension Force 
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3.16 Foundation on Rock  

It is common to use the building code values for the allowable bearing capacity of 

rocks (see Table 3.8). However, there are several significant parameters which should be 

taken into consideration together with the recommended code value; such as site geology, 

rock type and quality (as RQD). 

Usually, the shear strength parameters c  and   of rocks are obtained from high 

Pressure Triaxial Tests. However, for most rocks  45  except for limestone or shale 

)4538(  can be used. Similarly in most cases we could estimate 5c  MPa with a 

conservative value. 

Table (3.8): Allowable contact pressure .allq of jointed rock. 

RQD  % .allq  (T/ft2)  .allq  (kN/m2) Quality 

100 300 31678 Excelent 

90 200 21119 Very good 

75 120 12671 Good 

50 65 6864 Medium 

25 30 3168 Poor 

0 10 1056 Very poor 

1.0 (T/ft2) = 105.594 (kN/m2) 

Notes: 

(1)   If )strength..ecompressiv..unconfined(q)tabulated(q u.all   of intact rock sample, then  

take  u.all qq  . 

(2)   The settlement of the foundation should not exceed (0.5 inch) or (12.7mm) even for 

large loaded area. 

(3)   If the upper part of rock within a depth of about B/4 is of lower quality, then its 

RQD value should be used or that part of rock should be removed. 

 

Any of the bearing capacity equations from Table (3.2) with specified shape factors 

can be used to obtain .ultq  of rocks, but with bearing capacity factors for sound rock 

proposed by ( Stagg and Zienkiewicz, 1968) as:  

)2/45(tan5N 4
c  ,       )2/45(tanN 6

q  ,          1NN q   
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Then, .ultq  must be reduced on the basis of RQD as: 

                                                         2
.ult.ult )RQD(qq   

and                                                   
.S.F

)RQD(q
q

2
.ult

.all   

where: F.S.=safety factor dependent on RQD. It is common to use F.S. from (6-10) with 

the higher values for RQD less than about 0.75. 

 

 Rock Quality Designation (RQD): 

It is an index used by engineers to measure the quality of a rock mass and computed 

from recovered core samples as:  

advance..core..of..length

mm100core..of..pieces..actint..of..lengths
RQD

 
  

 

Example (19): (RQD) 

A core advance of 1500mm produced a sample length of 1310mm consisting of dust, gravel and 

intact pieces of rock. The sum of pieces 100mm or larger in length is 890mm.  

 

Solution: 

The recovery ratio 87.0
1500

1310
)L( r  ;  and  59.0

1500

890
)RQD(   

 

Example (20): (foundation on rock) 

A pier with a base diameter of 0.9m drilled to a depth of 3m in a rock mass. If RQD = 0.5, 

 45 and c = 3.5 MPa , rock = 25.14 kN/m3, estimate .allq of the pier using Terzaghi's 

equation.  

 

Solution: 

By Terzaghi's equation:        S.N..B.
2

1
qNS.cNq qcc.ult   

Shape factors:  from table (3.2) for circular footing:     3.1Sc  ;     6.0S   
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Bearing capacity factors:   )2/45(tan5N 4
c  ,    )2/45(tanN 6

q  ,     1NN q   

for  45 ,    170Nc  ,    ,198qN         199N   

78.789)6.0)(199)(9.0)(14.25(5.0)198)(14.25)(3()3.1)(170)(10x5.3(q 3
.ult   MPa  

and                                     MPa..815.65
0.3

)5.0(78.789

.S.F

)RQD(q
q

22
.ult

.all   

 

 


